证明数字搜索(PNS)和蒙特卡洛树搜索(MCT)已成功地用于一系列游戏中的决策。本文提出了一种称为PN-MCTS的新方法,该方法通过将证明和调解数字的概念纳入MCT的UCT公式来结合这两种树搜索方法。实验结果表明,PN-MCTS在包括动作线,Minishogi,Knightthrough和Awari在内的多个游戏中优于基本MCT,达到了高达94.0%的获胜率。
translated by 谷歌翻译
基于平铺,形状和图形运算符,通过其底层图描述了Ludii General Game系统的游戏板,自动检测图形元素,方向和径向序列之间的拓扑关系等重要属性。这种方法允许简单而简洁地描述最能实现的游戏板。
translated by 谷歌翻译
本文介绍了三种不同的播出优化实现,如Monte-Carlo树搜索等游戏播放算法常用。每个优化的实现都仅适用于根据其规则的特定游戏集。Ludii General游戏系统可以根据游戏的描述在其常规游戏描述语言中,是否适用任何优化的实现。经验评估展示了标准实施中的主要加速,其中运行播出的中位结果是快速的播出5.08倍,在Ludii中超过145个不同的游戏,其中一个优化的实现是适用的。
translated by 谷歌翻译
While the brain connectivity network can inform the understanding and diagnosis of developmental dyslexia, its cause-effect relationships have not yet enough been examined. Employing electroencephalography signals and band-limited white noise stimulus at 4.8 Hz (prosodic-syllabic frequency), we measure the phase Granger causalities among channels to identify differences between dyslexic learners and controls, thereby proposing a method to calculate directional connectivity. As causal relationships run in both directions, we explore three scenarios, namely channels' activity as sources, as sinks, and in total. Our proposed method can be used for both classification and exploratory analysis. In all scenarios, we find confirmation of the established right-lateralized Theta sampling network anomaly, in line with the temporal sampling framework's assumption of oscillatory differences in the Theta and Gamma bands. Further, we show that this anomaly primarily occurs in the causal relationships of channels acting as sinks, where it is significantly more pronounced than when only total activity is observed. In the sink scenario, our classifier obtains 0.84 and 0.88 accuracy and 0.87 and 0.93 AUC for the Theta and Gamma bands, respectively.
translated by 谷歌翻译
Previous work has shown the potential of deep learning to predict renal obstruction using kidney ultrasound images. However, these image-based classifiers have been trained with the goal of single-visit inference in mind. We compare methods from video action recognition (i.e. convolutional pooling, LSTM, TSM) to adapt single-visit convolutional models to handle multiple visit inference. We demonstrate that incorporating images from a patient's past hospital visits provides only a small benefit for the prediction of obstructive hydronephrosis. Therefore, inclusion of prior ultrasounds is beneficial, but prediction based on the latest ultrasound is sufficient for patient risk stratification.
translated by 谷歌翻译
Artificial intelligence methods including deep neural networks (DNN) can provide rapid molecular classification of tumors from routine histology with accuracy that matches or exceeds human pathologists. Discerning how neural networks make their predictions remains a significant challenge, but explainability tools help provide insights into what models have learned when corresponding histologic features are poorly defined. Here, we present a method for improving explainability of DNN models using synthetic histology generated by a conditional generative adversarial network (cGAN). We show that cGANs generate high-quality synthetic histology images that can be leveraged for explaining DNN models trained to classify molecularly-subtyped tumors, exposing histologic features associated with molecular state. Fine-tuning synthetic histology through class and layer blending illustrates nuanced morphologic differences between tumor subtypes. Finally, we demonstrate the use of synthetic histology for augmenting pathologist-in-training education, showing that these intuitive visualizations can reinforce and improve understanding of histologic manifestations of tumor biology.
translated by 谷歌翻译
We consider the problem of data classification where the training set consists of just a few data points. We explore this phenomenon mathematically and reveal key relationships between the geometry of an AI model's feature space, the structure of the underlying data distributions, and the model's generalisation capabilities. The main thrust of our analysis is to reveal the influence on the model's generalisation capabilities of nonlinear feature transformations mapping the original data into high, and possibly infinite, dimensional spaces.
translated by 谷歌翻译
Partially observable Markov decision processes (POMDPs) provide a flexible representation for real-world decision and control problems. However, POMDPs are notoriously difficult to solve, especially when the state and observation spaces are continuous or hybrid, which is often the case for physical systems. While recent online sampling-based POMDP algorithms that plan with observation likelihood weighting have shown practical effectiveness, a general theory characterizing the approximation error of the particle filtering techniques that these algorithms use has not previously been proposed. Our main contribution is bounding the error between any POMDP and its corresponding finite sample particle belief MDP (PB-MDP) approximation. This fundamental bridge between PB-MDPs and POMDPs allows us to adapt any sampling-based MDP algorithm to a POMDP by solving the corresponding particle belief MDP, thereby extending the convergence guarantees of the MDP algorithm to the POMDP. Practically, this is implemented by using the particle filter belief transition model as the generative model for the MDP solver. While this requires access to the observation density model from the POMDP, it only increases the transition sampling complexity of the MDP solver by a factor of $\mathcal{O}(C)$, where $C$ is the number of particles. Thus, when combined with sparse sampling MDP algorithms, this approach can yield algorithms for POMDPs that have no direct theoretical dependence on the size of the state and observation spaces. In addition to our theoretical contribution, we perform five numerical experiments on benchmark POMDPs to demonstrate that a simple MDP algorithm adapted using PB-MDP approximation, Sparse-PFT, achieves performance competitive with other leading continuous observation POMDP solvers.
translated by 谷歌翻译
通用数据模型解决了标准化电子健康记录(EHR)数据的许多挑战,但无法将其集成深度表型所需的资源。开放的生物学和生物医学本体论(OBO)铸造本体论提供了可用于生物学知识的语义计算表示,并能够整合多种生物医学数据。但是,将EHR数据映射到OBO Foundry本体论需要大量的手动策展和域专业知识。我们介绍了一个框架,用于将观察性医学成果合作伙伴关系(OMOP)标准词汇介绍给OBO铸造本体。使用此框架,我们制作了92,367条条件,8,615种药物成分和10,673个测量结果的映射。域专家验证了映射准确性,并且在24家医院进行检查时,映射覆盖了99%的条件和药物成分和68%的测量结果。最后,我们证明OMOP2OBO映射可以帮助系统地识别可能受益于基因检测的未诊断罕见病患者。
translated by 谷歌翻译
成像表明临床前和人类肿瘤是异质性的,即单个肿瘤可以表现出多个区域,在正常发育过程中均表现出不同的行为,也可以反应治疗。在对照组肿瘤中观察到的大变化可能会掩盖由于归因于变化原因的歧义而导致的显着治疗作用的检测。由于实验设计的局限性,而不是由于治疗衰竭,这可能会阻碍有效疗法的发展。描述了对成像信号中生物变异和异质性进行建模的改进方法。具体而言,线性泊松建模(LPM)在放疗前和72小时之前评估了两种结直肠癌的异种移植模型,在放疗前和72小时后评估了明显的扩散效率(ADC)的变化。使用基本ADC分布参数的常规t检验分析将测量变化的统计显着性与可实现的变化的统计显着性进行了比较。当LPM应用于治疗的肿瘤时,LPM检测到了高度显着的变化。与常规方法相比,所有肿瘤的分析对于所有肿瘤都很重要,相当于4倍的增益(即等同于样本量大16倍)。相比之下,只有使用t检验在队列水平上检测到极大的变化,从而限制了其在个性化医学中的潜在用途,并增加了测试过程中所需的动物数量。此外,LPM使每个异种移植模型估计响应和非反应组织的相对体积。对处理过的异种移植物的剩余分析提供了质量控制并确定了潜在的异常值,从而提高了对临床相关样本量的LPM数据的信心。
translated by 谷歌翻译